The role of fibrinolytic genes and proteins in the development of allograft vascular disease

Authors

Raymond L. Benza, Michael J. Passineau, Peter G. Anderson, Joseph P. Barchue, James F. George

Abstract

We have previously shown that lack of plasminogen activator inhibitor-1 (PAI-1) expression in donor tissue greatly increases intimal proliferation (IP) after allogeneic transplantation. We sought to determine the relative role of PAI-1 and other fibrinolytic proteins in the development of IP. We used an abdominal aortic transplant model in mice to investigate IP in 3 groups of 6 recipients. In the isograft group, CBA/J strain mice were donors and recipients, donors for allograft group were C57BL/6J mice, and for the allograft/knockout group, C57BL/6J PAI-1 knockout mice. All groups received weekly injections of anti-CD8/CD4 monoclonal antibodies. IP was calculated at 50 days, and sections were analyzed for fibrinolytic proteins, messenger RNA (mRNA) and PAI-1 activity using immunohistochemistry (IHC), in situ hybridization (ISH), reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analysis. Significantly more IP developed in the allograft/knockout group vs the isograft (p < 0.001) and the allograft groups (p = 0.003). There was marked intimal expression of tissue plasminogen activator (tPA), urokinase PA (uPA), and uPA receptor (uPAR) proteins and mRNA in the allograft and allograft/knockout groups vs the isograft group. Allografts also showed significant intimal staining for PAI-1 protein and mRNA. RT-PCR demonstrated a stepwise increase in profibrinolytic protein mRNA from isograft to allograft to allograft/knockout groups, particularly uPA (p = 0.02) and uPAR (p = 0.016). Western blot data showed complementary findings. PAI-1 activity was persistently present in isograft and allograft animals, only. Intimas in allograft and allograft/knockout groups were primarily smooth muscle cells. PAI-1 reduces IP by limiting smooth muscle cell activity, with little change in matrix composition likely by modulating profibrinolytic protein expression.