How the primate fornix is affected by age


Alan Peters, Claire Sethares, Mark B. Moss


The effects of age on nerve fibers and neuroglial cells in the fornix were examined in 25 rhesus monkeys between 4 and 33 years of age. There is no age-related change in the cross-sectional area of the fornix, but there is a significant loss of myelinated nerve fibers. The loss of myelinated nerve fibers is accompanied by a significant increase in the numbers of nerve fibers that show degeneration of their axons and alterations in myelin sheaths. Aging also brings about an increase in the frequency of profiles of paranodes, indicating that some of the nerve fibers are being remyelinated. Aging also affects neuroglial cells. Each type shows inclusions in their perikarya, and in the case of astrocytes and microglial cells some of these inclusions are phagocytosed myelin. Numbers of astrocytes and microglial cells do not appear to increase with age, but there is a 20% increase in oligodendrocytes. When correlations with cognitive impairments displayed by individual monkeys are examined, the decreased packing density of nerve fibers and the increasing frequency of nerve fibers with degenerating axons and of nerve fibers with altered myelin sheaths all correlate with increasing cognitive impairment. It is suggested that these correlations result from some disconnection of the hippocampus from the thalamus, septal nuclei, and medial frontal cortex and from reductions in the conduction velocity brought about by the shorter internodal lengths of remyelinated nerve fibers in the fornix.