Prior Fighting Experience Increases Aggression in Syrian Hamsters: Implications for a Role of Dopamine in the Winner Effect


Jared J. Schwartzer, Lesley A. Ricci, Richard H. Melloni Jr.


Winning an aggressive encounter enhances the probability of winning future contests. This phenomenon, known as the winner effect, has been well studied across vertebrate species. While numerous animal models have been developed to study the winner effect in the laboratory setting, large variation in experimental design, choice of species, and housing conditions have resulted in conflicting reports on the behavioral outcomes. The Syrian hamster (Mesocricetus auratus) presents as a novel species with face validity to study the effects of repeated fighting on subsequent agonistic encounters. After a 14-day training period, “trained fighter” hamsters displayed elevated fighting behaviors characterized by more intense and severe displays of aggression along with increased displays of dominant postures compared to naïve residents with no prior social experience. To determine whether these phenotypic changes in fighting behavior reflect alterations in neurochemistry, brains of aggressive and naïve hamsters were examined for changes in dopaminergic innervation in key regions known to control social and motivational behavior. Interestingly, changes in tyrosine hydroxylase, the rate limiting enzyme for dopamine production, were observed in brain regions within the social decision-making network. These increases in aggression observed after repeated winning may reflect a learned behavior resulting from increases in neurotransmitter activity which serve to reinforce the behavior. The data implicate the presence of a winner effect in hamsters and provide evidence for a neural mechanism underlying the changes in aggressive behavior after repeated agonistic encounters.