Age-related epigenetic changes in hippocampal subregions of four animal models of Alzheimer's disease

Both aging and Alzheimer's disease (AD) are associated with widespread epigenetic changes, with most evidence suggesting global hypomethylation in AD. It is, however, unclear how these age-related epigenetic changes are linked to molecular aberrations as expressed in animal models of AD. Here, we investigated age-related changes of epigenetic markers of DNA methylation and hydroxymethylation in a range of animal models of AD, and their correlations with amyloid plaque load.

Cytokine MCP-1 Levels in Hippocampus CA1 are Correlated with Voluntary Ethanol Consumption in Cynomolgus Monkey

Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) are potent neuromodulators that enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Chronic ethanol (EtOH) consumption reduces 3α,5α-THP levels in human plasma, but has brain region- and species-specific effects on central nervous system levels of 3α,5α-THP.

HMGB1/IL-1β complexes regulate neuroimmune responses in alcoholism

Neuroimmune activation is a key feature of the pathologies of numerous psychiatric disorders including alcoholism, depression, and anxiety. Both HMGB1 and IL-1β have been implicated in brain disorders. Previous studies find HMGB1 andIL-1β form heterocomplexes in vitro with enhanced immune responses, lead to our hypothesis that HMGB1 and IL-1β heterocomplexes formed in vivo to contribute to the pathology of alcoholism.

Persistent Decreases in Adult Subventricular and Hippocampal Neurogenesis Following Adolescent Intermittent Ethanol Exposure

Neurogenesis in hippocampal dentate gyrus (DG) and subventricular zone (SVZ) matures during adolescence to adult levels. Binge drinking is prevalent in adolescent humans, and could alter brain neurogenesis and maturation in a manner that persists into adulthood. To determine the impact of adolescent binge drinking on adult neurogenesis, Wistar rats received adolescent intermittent ethanol (AIE) exposure (5.0 g/kg/day, i.g., 2 days on/2 days off from postnatal day, P25–P54) and sacrificed on P57 or P95. Neural progenitor cell proliferation, differentiation, survival and maturation using immunohistochemistry was determined in the DG and SVZ.

A role for histone acetylation mechanisms in adolescent alcohol exposure-induced deficits in hippocampal brain-derived neurotrophic factor expression and neurogenesis markers in adulthood

Binge drinking during adolescence is a risk factor for neuropsychiatric disorders that can develop later in life. Histone acetylation is an important epigenetic mechanism that contributes to neurodevelopment.