Alzheimer's

Age-related epigenetic changes in hippocampal subregions of four animal models of Alzheimer's disease

Both aging and Alzheimer's disease (AD) are associated with widespread epigenetic changes, with most evidence suggesting global hypomethylation in AD. It is, however, unclear how these age-related epigenetic changes are linked to molecular aberrations as expressed in animal models of AD. Here, we investigated age-related changes of epigenetic markers of DNA methylation and hydroxymethylation in a range of animal models of AD, and their correlations with amyloid plaque load.

Innate Immunity Stimulation via Toll-like Receptor 9 Ameliorates Vascular Amyloid Pathology in Tg-SwDI mice with Associated Cognitive Benefits

Alzheimer's disease (AD) is characterized by the presence of parenchymal amyloid-beta (Aβ) plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles. Currently there are no effective treatments for AD. Immunotherapeutic approaches under development are hampered by complications related to ineffectual clearance of CAA.

In Vivo Detection of Age- and Disease-Related Increases in Neuroinflammation by 18F-GE180 TSPO MicroPET Imaging in Wild-Type and Alzheimer's Transgenic Mice

Alzheimer's disease (AD) is the most common cause of dementia. Neuroinflammation appears to play an important role in AD pathogenesis. Ligands of the 18 kDa translocator protein (TSPO), a marker for activated microglia, have been used as positron emission tomography (PET) tracers to reflect neuroinflammation in humans and mouse models.

Immunization with a Nontoxic/Nonfibrillar Amyloid-β Homologous Peptide Reduces Alzheimer's Disease-Associated Pathology in Transgenic Mice

Transgenic mice with brain amyloid-β (Aβ) plaques immunized with aggregated Aβ1-42 have reduced cerebral amyloid burden. However, the use of Aβ1-42 in humans may not be appropriate because it crosses the blood brain barrier, forms toxic fibrils, and can seed fibril formation.